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Abstract

The origin of spurious solutions in computational electromagnetics, which violate

the divergence equations, is deeply rooted in a misconception about the first-order

Maxwell's equations and in an incorrect derivation and use of the cuff-curl equa-

tions. The divergence equations must be always included in the first-order Maxwen's

equations to maintain the ellipticity of the system in the space domain and to guar-

antee the uniqueness of the solution and/or the accuracy of the numerical solutions.

The div-curl method and the least-squares method provide rigorous derivation of

the equivalent second-order Maxwell's equations and their boundary conditions. The

node-based least-squares finite element method(LSFEM) is recommended for solving

the first-order full Maxwell equations directly. Examples of the numerical solutions

by LSFEM for time-harmonic problems are given to demonstrate that the LSFEM is

free of spurious solutions.
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1 Introduction

The occurrence of spurious solutions in computational electromagnetics has been

known for more than two decades, and elimination of such non-physical solutions is

still a subject of great interest. The noted feature of these fictitious solutions has been

their violating the divergence-free conditions in cases where the physical solution is

completely solenoidal. There is a vast body of reports about spurious solutions asso-

dated" with the finite element method, see e.g., Cendes and Silvester [10], Bird [3],

Ikeuchi et al. [22], Davies et al. [14], Rahman and Davies [52] [53], Winkler and Davies

[88],Webb[88],Welt and Webb[87],Koshibaet al. [30][31],Iseet al. [21],R hman
et al. [54] and Schroeder and Wolff [56]. The majority of spurious solutions has been

found in the context of eigenvalue analysis. A spurious mode does not correspond

to the physics] modes which the waveguide or resonator under consideration actu-

ally supports. The spurious mode problem is severe and often renders the numerical

solution useless. The spurious solutions have been also revealed in boundary-value

problems, see, e.g., Crowley et al. [13], Pinchuk et al. [50], Wong and Cendes [69] [70]

and Paulsen and Lynch [49].

The phenomenon of spurious solutions is not exclusive with the finite element

method. This phenomenon has been also reported in the context of the finite differ-

ence method, see e.g., Corr and Davies [12], Mabaya et el. [36], Schwieg and Bridges

[57] and Su [61], the boundary element method, see e.g., Ganguly and Spielman [17]

and Swsminathan et al. [62], and the spectral method, see Farrar and Adams [15].

This fact itself undermines the common belief that the spurious solution is a result of

numerical process. In our opinion, the trouble of spurious solutions in computational

electromagnetics is deeply rooted in a misconception of the first-order Maxwell's equa-

tions and in an incorrect derivation and use of the second-order curl-curl equations.

We agree with Mur [44] [45] that spurious solutions can only be avoided by a correct

formulation of the problem to be solved.

In terms of the type of differential equations to be solved, conventions] numerical

methods in computational electromagnetics may be classified into four categories: (1)

those based on the first-order curl equations; (2) those based on the second-order

curl-curl equations; (3) those based on the Helmholtz equations; (4) those based on

the potentials.

The most widely used numerical method for the solution of time-dependent elec-

tromagnetic problems has been the finite-difference time-domain (FD-TD) scheme

developed by Yee [72] and extensively utilized and refined by Taflove and Umashankar

[63] and Kunz and Luebbers [33], as well as others. In the Yee scheme, only the two

Msxwell's curl equations axe solved. Some other time-domain methods axe also based

on the two Maxwell's curl equations, such as the finite volume method developed by

Shankar et al. [58], the finite difference and finite volume methods by Shang [59] and

Shang and Galtonde [80], and the finite element methods by Mei and his colleagues

[8], Msdsen and his colleagues [37] [34], Noack and Anderson [47] and Ambrosiano et

al. [I]. In general, these approaches do not produce noticeable spurious solutions. This



is attributed to the fact that by taking the divergence of the Faraday and Ampere

laws, one finds that these divergence-free conditions wiU be satisfied for all time if

they are satisfied initially. However, it is not so easy to satisfy them initially in these

methods. In fact, in these papers the satisfaction of divergence-free conditions was

not even considered except by Shang and Gaitonde [60] who seriously examined the value

of divergence of the computed magnetic £eld.

In the original full Maxwell's equations, when the constitutive relations are sped-

fled, for three dimensional cases there are eight _st-order equations but only six un-

known vector components, and for two dimensional TE and TM cases four equations

and three unknowns. That is, the number of equations is larger than the number

of the unknown functions. For this reason, it is traditionally believed that the full

fg_st-order Maxwdl's equations are "overdetermined" or %verspedfied', and the two

divergence equations are thus regarded as "auxiliary" or "dependent" and are often

neglected in numerical computation.

The fLrst-order full Maxwe11's equations have a mathematical structure in which

the fundamental ingredient is the div-curl system that looks "overdetermined'. A

similar situation exists in fluid dynamics, see Jiang et el. [27]. By introducing a dummy

variable(Chang and Ounzburger [11]), however, it can be shown that the div-curl

system is not "overdetermined'. In this paper, we use this technique to study the full

Maxwell's equations and show that they are properly determined, that is, the two

divergence equations should not be ignored regardless in either the static or in the

time-varying cases.

In electromagnetics, there are mainly two reasons why the second-order curl-curl

equations are often employed. First, it is hard for conventional numerical methods to

deal with the non-self-adjoint first-order derivatives. Second, in the curl-cu_l equations

the dectric field and the magnetic field are decoupled. The curl-curl equations are

derived from the f_rst-order Max'well's curl equations by applying the curl operator.

It seems that no one has addressed a very important issue: the curl-curl equations

obtained by simple differentiation without additional equations and boundary condi-

tions admit more solutions than do its progenitors. In order to derive an equivalent

higher-order system from a system of vector partial dlfgerential equations, one should

use the div-curl method that is based on the theorem: if a vector is divergence-free

and curl-free in a domain, and its normal component or tangential components on

the boundary is zero, then this vector is identically zero. In other words, the curl and

the divergence operators must act together with appropriate boundary conditions to

guarantee that there are no spurious solutions in the resulting higher-order equations.

In this paper, this div-curl method originally developed by Jiang et al. [27] is em-

ployed to derive the second-order system of time-dependent Maxwdl's equations and

its boundary conditions, and to show that the divergence equations and additional

boundary conditions must be supplemented to the curl-curl equations.

The common approach to removing spurious vector modes in the curl-curl equa-

tions is to modify the variational functional by penalizing the non-zero divergence.



The key to success with this so-called penalty method, first used by Hara et al [20]

and Rahman and Davies [53], depends on the choice of the correct penalty factor -

values too small or too large do not eliminate spurious solutions. Unfortunately, this is

an ad hoc and problem-dependent treatment and there has been a lack of systematic

study of the rationale for selecting this parameter for general problems.

Recently, the edge element method of Nedelec [46], see e.g., Bossavit and Verite

[5], Hano [19], Mur and Hoop [43], Barton and Cendes [2], Bossavit [4], Bossavit

and Mayergoyz [6], Monk [41], Jin [28], Volakis et al. [65] and the references therein,

has been advocated, because it is believed to be a cure for many difficulties that

axe encountered when attempting to solve electromagnetic field problems by using

conventional node-based finite elements. Apart from the fact that such an approach

can only be used in the simple divergence-free case, edge elements violate the normal

field continuity between adjacent elements in the homogeneous material domain, see

Mur [45] for comments and an example. The accuracy of edge elements is lower than

that of the nodal elements for the same number of unknowns, or the computational

cost of edge elements is much higher than that of nodal elements for the same accuracy,

see Mur [45] and Monk [42]. The edge element method also needs non-conventional

meshing and postprocessing which are not normally available. Moreover, Ross et al.

[55] reported that the edge element method broke down for large-scale computations

due to the fact that edge elements cannot represent purely TE fields.

It is well known that the solution of the Helmholtz equations with proper boundary

conditions is free of spurious modes, see Mayergoyz and D'Angelo [38]. The key issue in

the Helmholtz method is how to specify proper boundary conditions. In this paper,

we use the div-cufl method and the least-squares method to derive the Helmholtz

equations and their boundary conditions, and show that the divergence equations

need to be enforced only on a part of boundary, and they will be implicitly satisfied

in the domain. We also give a Galerkin variational formulation which corresponds to

the Hehnholtz equations. This theoretically justifies that the penalty parameter s in

the penalty method should be equal to one.

The potential approach is widely used in computation of static fields and eddy

currents. Although the potential approach, see e.g., Boyse et al. [7] for time-harmonic

problems, does not give rise to spurious modes, it involves difficulties related to the

appropriate gauging method and the loss of accuracy of the calculated field intensity

from the potentials by the numerical differentiation.

This paper emphasizes that in any case the divergence equations must be included

explicitly or implicitly as a part of the formulation for electromagnetic problems.

However, it is not so easy to combine the divergence equations in conventional meth-

ods. Attempts to satisfy the divergence-free equations by using edge elements merely

complicate the situation by introducing the need to impose an additional condition

of normal field continuity.

This paper shows that the satisfaction of the divergence equations and the elimina-

tion of spurious solutions can be achieved easily by the application of the node-based
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least-squares finite element method (LSFEM). We believe that the LSFEM is the

best choice among the available methods for numerical solution of many problems

in electromagnetics, since it is simple, universal, optimal, robust and efficient. The

LSFEM is based on the minimization of the residuals in first-order partial differen-

tial equations. The LSFEM has been successfully applied to various fluid dynamics

problems, see e.g., Jiang et al. [24] [26], Tang and Tsang [64] and Lefebvre et al.

[35]. The LSFEM is naturally suitable for the first-order full Maxwel]'s equations.

The preliminary results of LSFEM for time-domain scattering wave problems can be

found in Wu and Jiang [71]. The theory and the least-squaxes method for the div-curl

system discussed in this paper can be employed to directly solve static electric or

magnetic fields without introducing the potentials and gauging. In the last section

of this paper we briefly discuss the general formulation of the LSFEM and apply it

to time-harmonic problems. Numerical examples are given to demonstrate that the

LSFEM is free of spurious solutions.

2 The Div-Curl System

In this section, we study the div-curl system. We shall show that the three di-

mensional div-curl system is not "overdetermined'. We shall introduce the div-curl

method to derive a second-order system equivalent to the ally-curl system. We shall

show why the lea.st-squares method is the best method for the solution of the div-curl

system. The technique and the procedure developed here will be applied to dealing

with the Maxwell's equations. Since the static Maxwell's equations axe typical div-

curl systems, the least-squares method introduced in this section can be applied to

the direct solution of static electric or magnetic fields.

2.1 Basic Theorems

First we introduce some notations which are common in functional analysis. These

notations will help us to write the mathematical formulations more concisely. Let

_2 C ]R s be a bounded, simply connected, convex and open domain with a piece-

wise smooth boundary 1" - F1 U F2. Either P1 or P2, not both, may be empty. Also

F1 and r, must have at least one commom point, x = (z,y,z) be a point in f_, n

be a unit outward normal vector and 1- be a tangential vector to P at a boundary

point, respectively. L2(f_) denotes the space of square-integrable functions defined on

f_ equipped with the inner product

(u, v) =/a uvdfl

and the norm

I1 '11 . = (",")-
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H'(ft) denotes the Sobolev space of functions with square-integrable derivatives of

orderup to r. II"I1,,odenotes the usual norm for H'(f_). For vector-valued functions

u with m components, we have the product spaces

L,(n)% n_Cn)_

with the inner product

and the corresponding norm

Further we define

(u, v) = fn u- vdft

trg tn

I1-11'0,°-- II _11o,o, u 2 2II II,.n= _ II'_Jll,,o.
j=l j=l

f

< u, v >r = Jr
_dr.

When there is no chance for confusion, we will often omit the measure f_ or r from

the inner product mad norm designation.

Throughout the paper C denotes a positive constant dependent on f_ with possibly

different values in e_h appearance.

The following theorems are essential in this paper.

Theorem 1. If u e H,(n) s, then n x u = 0 on r_ # 0 ¢_ n- V x u = 0 on r2.

Here the notation "¢#" stands for "leading to and vice versa". The proof of The-

orem 1 is straightforward by using the Stokes theorem, see Pironneau [51] or ffiang et

al.[27].

Theorem 2 (Friedrichs'Div-Curl Inequaiity).Every function u of H1(fl)s with

n. u = 0 on rl and n x u = 0 on r2 satisfies:

Ilull, _ _< C(llV" ,.,ll_ + IIv x ull_), (2.1)

where the constant C > 0 depends only on f/.

The proof of Theorem 2 involves lots of mathematics. We refer to Girault and

Raviart [18], Krizek and Neittaanmald [32] and Jiang et al. [27]. This theorem implies

that the div-curl norm appearing in the right-hand side of (2.1) is equivalent to the

H i norm. This theorem plays a key role in the anaiysis of the least-squares method.

From Theorem 2, we can immediately obtain the following theorem which is the basis

of the div-curl method for deriving higher-order vector equations:

Theorem 3 (The Div-Curl Theorem). If u e Ht(fl) s satisfies

V-u=O in fl,



then

V×u--O in f_,

n-u --0 on P1,

n×u--O on r_,

u--0 in ft.

This theorem can also be proved easily by introducing the potential.

Theorem 4 (The Gradient Theorem). If g E Hl(f_) satisfies

V g = 0 in N,

g=O on rl#O(oron r2#0),

then

g --0 in N.

The validation of Theorem 4 is obvious. In fact, g = 0 needs to be specified only

at any point in the domain or on the boundary. This theorem will be used to derive

the higher-order equations which axe equivalent to a scalar equation.

2.2 The Div-Curl System

Let us consider the following three-dimensional ally-curl system:

Vxu=_ inN,

V.u=p inN,

n.u=0 onrl,

n×u=0 o r2,

(2.2a)

(2.2b)

(2.2c)

(2.2d)

where the given vector function w E L2(f_) a

conditions:

V._=0 inN,

n-w=0 o r,,

n -.,ds = O.

must satisfy the following compatibility

(2.3a)

(2.3b)

(2.3c)

If I', is empty, then the given scalar function p E L2(N) must satisfy the compatibility

condition:

/ pdN = O. (2.3d)
Jfl
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At first glance, System (2.2) seems "overdetermined" or "overspecified', since

there are four equations and three unknowns. For this reason, indeed, solving (2.2)

is not trivial by conventional finite difference or finite element methods. However,

after careful investigation we shall find that System (2.2) is properly determined and

elliptic.

By introducing a dummy variable _, System (2.2) can be written as

V_+V×u--w inf2, (2.4a)

V. u = p in _, (2.4b)

n. u - 0 on 1`1, (2.4c)

0 =0 on rl, (2.4d)

n x u = 0 on 1"2. (2.4e)

Notice that we impose v° = 0 on 1"1, and do not specify any boundary condition for

the dummy variable 0 on 1"2.

By virtue of Theorem 3, Eq. (2.4a) is equivalent to the following equations and

boundary conditions:

Vx(V0+Vxu-ta)=0 in ft, (2.5a)

V . (VO + V × u - w) = O in ft, (2.5b)

n×(Vtg-4-Vxu-w)=0 on I"1, (2.5c)

n-(W + v ×u - _,)= 0 on r2. (2.s_)

Taldng into account the compatibility conditions (2.3a) and (2.3b), the boundary

condition (2.4e)and Theorem 1, Eq. (2.Sb),(2.4d)and (2.5d) lead to

AO = 0 in f_, (2.6a)

= 0 on 1`i, (2.6b)

00

a--_= 0 on r2. (2.6c)

From (2.6) we know that t* - 0 in ft. That is, the introduction of _ into (2.2) does

not change anything, and thus System (2.4) with four equations and four unknowns

is indeed equivalent to System (2.2).

Now let us classify System (2.4). In Cartesian coordinates the equations in System

(2.4) axe given as
_0 Ow Ov

O0 _u Ow
_--+ = _,, (2.Z)

0z 0zyet



Ou Ov Ow

o_ + _ + Oz = p"

We may write System (2.7) in the standaxd matrix form:

0u 0u 0u

Al_zz + A,_-_y+ A3_z + Aou = f, (2.8)

in which

A1 -- i)(ooi  0 -1 0 A2 = 0 0 0
1 0 0 ' -1 0 0

0 0 0 0 1 0

(Ol-1°!/oo l!°°oo!)A3 = 0 0 0 , Ao = 0 0 '

0 0 1 0 0

w_ u=f=

The chaxacteristic polynomial associated with System (2.7) is

det(A_ + A2_+ As_)= det
¢ 0

= (_, + _2+ ¢2)2# 0

for all nonzero real triplets (_, rl, ¢), System (2.4) is thus elliptic and properly deter-

mined.

The fist-order elliptic system (2.4) has four equations and four unknowns, so two

boundaxy conditions on each boundary axe needed to make System (2.4) wen-posed.

Here 0 = 0 and n • u = 0 serve as two boundary conditions on rl; while n x u = 0

implies that two tangential components of u axe zero on r2.

Since System (2.2) is equivalent to System (2.4), and System (2.4) is elliptic and

properly determined, so is System (2.2).

Remark In fact, the compatibility conditions (2.3a,b) can be obtained by applying

the div-curl method to the equation (2.2a).
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2.3 The Div-Curl Method

Let us derive a hlgher-order system which is equivalent to the ally-curl system (2.2).

By virtue of Theorem 3, System (2.2) is equivalent to the following system:

v x (vx u - _)= 0 ina, (2.9a)

V-(V×u-w)=0 in _, (2.9b)

. × (v×. - _,)- o on r,, (2.9c)

n.(v× u - _)= 0 on r,. (2.9d)

V. u --p in ft, (2.9e)

n-u = 0 on rl, (2.9/)

n×u=0 onto. (2.9g)

Due to the compatibility conditions (2.3a,b), the boundary condition (2.9g) and The-

orem 1, (2.9b) and (2.9d) axe satisfied. Therefore, System (2.9) can be simplified

a.$

Vx(Vxu)=Vxw in f_, (2.10a)

V. u = p in _, (2.10b)

n. u = 0 on rl, (2.10c)

nx(Vxu)=n×¢_ on rl, (2.10d)

n × u = 0 on r_. (2.10e)

Now at least one thing is made cleax by the div-curl method. That is, the curl-curl

equation (2.10a) cannot stand alone; it must go with the divergence equation (2.10b)

and the additional Neumann boundary condition (2.10d).

System (2.10) can be further simplified. By virtue of Theorem 4, Eq. (2.10b) is

equivalent to the following system of equations and boundary condition (assuming

that r2 _ 0):

v(v._- p)= 0 in a, (2.11_)

V- u = p on r2. (2.11b)

Taking into account (2.11)and the following vector identity:

V x V × u = V(V. u)- An, (2.12)

System (2.10) can be reduced as

Au=-V×_+Vp in f2, (2.13a)

V(V. u - p) = 0 in a, (2.13b)
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n. u = 0 on rl, (2.13c)

n×(Vxu)-n×_ on I'1, (2.13d)

n × u = 0 on I'2, (2.13e)

V- u -- p on F2. (2.13./)

The solution of the derived second-order system (2.10) or (2.13) is completdy identical

to the solution of the original div-curl system (2.2), therefore no spurious solution will

be produced by the system (2.10) or (2.13). Moreover, the divergence equation (2.13b)

in System (2.13) can be deleted. That is, the divergence equation is implidtly satisfied

by the equation (2.13a) and boundary conditions (2.13c-f). The rigorous proof of this

statement will be given by using the least-squares method in the next section. Here

we give a simple explanation adopted from Mayergoyz and D'Angelo [38]. Let us

consider a slightly different problem:

Au=-Vx_a+Vp in G, (2.14a)

n-u = 0 on 1"1, (2.14b)

n×(Vxu)=n×_ on rl, (2.14c)

n x u = 0 on I'_, (2.14d)

V. u - p = 0 on I'. (2.14e)

That is, we let the divergence equation be satisfied on the whole boundary. Although

this condition needs to be spedfied only on r2, it is not wrong for it to be enforced on

r. By taking the divergence of (2.14a) we obtain a Poisson equation of ¢ = V- u - p:

A¢ = 0 in 12. (2.15)

Since ¢ = 0 on the whole boundary, ¢ must be equal to zero in the whole domain,

i.e., the divergence equation is implicitly satisfied in the system (2.14).

2.4 The Least-Squares Method

Let us introduce a more powerful and systematic method, the least-squares method,

to solve System (2.2) and to derive a higher-order system without spurious solutions.

We construct the following quadratic functional:

I : "_--_ JR,

a(u) = llV× u - ,.,'llg÷ IlV.u - pl[o

where 7g = {u 6 Hl(12)Sln. u = 0 on Fl,n x u = 0 on r2}. We note that the

introduction of a dummy variable _ in Section 2.2 is only for the verification of the

determination, and it is not required in the least-squares functional I. Taking the
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variation of I with respect to u, and letting 5u = v and 5/= 0, we obtain a least-

squares variational formulation of the foI]owing type: find u E _ such that

B(u,v) : L(v) V_ _ _, (2.16)

where B(., .) is a bilinear form of the type

B(u, v) = (V × u, V x v) + (V- u, V. v),

and L(-) is a linear form of the type

L(-,) : (,,,,v × v) + (p,v. _).

Obviously the bi]inear form B(u, v) is symmetric and continuous. The coerciveness

of B(u, v) is due to Theorem 2. Therefore, we immediately have

1 2
ullull __<B(u,u) = L(u) _<Ilulll(ll,,.,llo+ II,ollo).

By virtue of the Lax-Milg_am theorem, see e.g., Oden and Reddy [48] or Johnson

[29], in fact we have proved the following theorem.

Theorem 5. The solution of (2.16) uniquely exists and satisfies:

ilull,_<C(ll,.,llo+ Ilpllo). (2.17)

The following theorem about the error estimate is also a direct consequence of the

above results.

Theorem 6. The LSFEM based on (2.16) has an optimal rate of convergence and

an optimal satisfaction of the divergence condition:

Ilu- u,,llo< Ch"+_llull_,

IIV-(u,,- p)llo-<Ch"llull_,

(2.18a)

(2.18b)

where uh is the finite element solution, k is the order of complete polynomials used

in the finite element interpolation.

The error estimate (2.18a) is not totally new. The early results were obtained by

Fix and Rose [16] for the case 1_2 : 0 and by Krizek and Neittaanmaki [32] for the

case rl : 0. The two-dimensional numerical results obtained by using the primitive

variables instesdy of the potential and a preliminary analysis can also be found in

Jiang and Chai [23] and Carey and Jiang [9].

The advantages of the LSFEM over the potential method for solving the div-curl

system is obvious: the trouble of selecting a proper gauging method is avoided; the
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electric or magnetic fields are obtained directly without numerical differentiation and

thus have a higher accuracy; and the electric or magnetic fields are continuous across
the element boundaries.

In order to further understand the least-squares method, we derive the Euler-

Lagrange equations associated with the least-squares variational formulation (2.16)
which can be rewritten as: find u E 7_ such that

(V × u - w, V × v) + (V. u - p, V. v) = 0 Yv _ 7_. (2.19)

Suppose that u, _o and p are sui_ciently smooth. By using Green's formulae, Eq.

(2.19) can be written as

(v x (v x u- o,),v)+ < (v x u-_),n x v >r +

(-v(v.,- p),v)+ < (v. u- p),n. v >r= 0 WETs. (2.20)

Taking into account (2.12) and that v satisfies n • v = 0 on I'1 and n x v - 0 on P2,

from (2.20) we obtain

(-Au - V x _ + Vp, v)

- < n x (V x u-_),v>rl + < (V-u-p),n-v >r2= 0 (2.21)

for al] admissible v G "_, hence we have the Euler-Lagrange equation and boundary

conditions:

Au=-Vxw+Vp in _, (2.22a)

n-u = 0 on rl, (2.22b)

n×(V×u)-n×_ on rl, (2.22c)

n×u=0 on F,., (2.22d)

V.u = p on I",. (2.22e)

We note that in System (2.22) the divergence equation does not appear in the

domain. In fact, we have rigorously proved that the solution of the Helmholtz-type

system (2.22a) under additional boundary conditions (2.22c,e) automaticaJly satisfies

the divergence equation. We also remark that if I',. is empty, the divergence equation

does not even appear on the boundary. The attraction of using the higher-order

system (2.22) now becomes apparent: one avoids dealing with the divergence condition

(2.2b) which is impticltly satisfied; instead, one deals with three Poisson equations

that everyone would rather solve. However, we should mention that if one chooses

to use the finite _fference method to solve (2.22s), the additional natural boundary

conditions (2.22c,e) must be supplemented.

Now it is clear that the following four formulations are equivalent to each other:

(1) the first-order div-curl system (2.2); (2) the least-squares variational formula-

tion (2.16); (3) The Helmholtz-type system (2.22); and (4) the Galerkin formulation

(2.21). It turns out that the least-squares method (2.16) for the ally-curl equations
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(2.2) corresponds to using the Galerkin method (2.21) to solve System (2.22) which

consists of three independent second-order Poisson equations (2.22a) and three cou-

pled boundary conditions on each boundary, where the original first-order equations

(2.22c)and (2.22e)serve as the natural boundary conditions,and (2.12b) and (2.22d)

as the essentialboundary conditions.

Obviously, the least-squaxes problem is formally equivalent to a higher-order

problem with additional natural boundary conditions provided by the originalfirst-

order differentialequations. The least-squaresmethod (2.16)isthe simplest approach

among these equivalent methods, because it does not need any additional bound-

ary conditions.The trialfunction u and the testflmction v need to satisfyonly the

originalessentialboundary conditions.This is one of the reasons why we strongly

recommend the least-squaresmethod.

Now we have shown that the three-dimensional div-curlsystem can have three

equivalent differentialforms: (1) the first-ordersystem (2.2);(2) the curl-curlequa-

tion (2.10a) which must be accompanied by the divergence equation (2.10b) and

the additional Neumman boundary condition (2.10d); (3) three uncoupled Poisson

equations (2.22a)with additionalNenmman boundary conditions (2.10c)and (2.10e)

provided by the originalfirst-ordersystem.

in the following sections,we will show that MaxwelPs equations have similar

equivalent forms.

3 The First-Order Maxwell's Equations

in this section we shall show that the first-order full Maxwell's Equations axe not

"overdetermined", and thus the divergence equations should not be ignored.

3.1 The Basic Equations

For general time-varying fields, the original first-order fad] Maxwell's equations can

be written as

VxH

V x E + _9(pH) _ _Ki,.p
Ot

_9(_E) _E = Ji_P in fl,
0t

V. (eE) = ,oi"' in fl,

v.(_H)= 0 i.fi,

i_ a, (Faraday', Law) (3.1a)

(Mazwell- Ampere',Law) (3.1b)

(Gauss'8Law- Electric) (3.1c)

(Gauss's Law- Magnetic) (3.1d)

where E and H are the electric and magnetic field intensities respectively, pimp is the

imposed source of electric charge density, and jimp slid K imp are imposed sources of

electric and magnetic current density. All imposed sources are given functions of the

space mad time coordinates.
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In System(3.1) wehave already madeuseof the following constitutive relations:

D = eE,

B = pH,

J = o'S,

where D is the electric flux density, B is the magnetic flux density and J is the

electric (eddy) current density; and the constitutive parameters _, p and _r denote,

respectively, the permittivity, permeability and conductivity of the medium. These

parameters are tensors for anisotropic media, and may be functions of position and

time, and may depend on the field intensities. For simplicity, we consider isotropic

and homogeneous media, therefore they axe constant scalars.

The field equations axe supplemented by the boundary conditions:

n × E = 0 on rl, (3.1e)

n-(pH) = 0 on rl, (3.1f)

n x H = 0 on 1"2, (3.19)

_.(_E)- 0 onr_, (31h)
where rl is an electric wall, and r2 is a magnetic symmetry wall. Here we consider

only homogeneous boundary conditions, since inhomogeneous boundary terms can

always be converted into source terms.

For transient problems, the initial conditions on E and H should also be provided.

To allow System (3.1) to have a solution, the source terms must satisfy the fol-

lowing compatibility conditions:

V. K i'_p - 0 in C_, (3.2a)

n. K i'_p = 0 on rl, (3.2b)

fr n. Ki'_Pdr - 0, (3.2c)

OpimP

v. a"- + _ + (_/_)p', : 0 i_ f_, (3.2d)

n-J'_"= 0 onr_. (3.2e)

We remark that the compatibility conditions (3.2a,b,d,e) can be obtained by ap-

plying the div-curl method to the Maxwdl's curl equations (3.1a,b).
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3.2 The Determination

Consider the following systemaugmentedby the vaxiables_ and X:

V_ + V × E + #(#H) = _Ki,_p in _2,
& (3.3a)

Vx+VxH _)(_E)
Ot aE = jimp in n,

V. (eE) = pi"P in f_,

V. (pH) = 0 in _,

nxE--0 onFz,

X = 0, n- (pH) = 0 on I'1,

nxH=O on I'2,

= 0, n. (_E) = 0 on 1"2,

(3.3b)

(3.3c)

(3.3d)
(3.3e)
(3.3/)

(3.3g)
(3.3h)

We shall prove that _o and X in (3.3) are dummy variables, i.e., System (3.3) is

equivalent to System (3.1). In fact, by virtue of the div-curl theorem, Eq. (3.3a) and
(3.3b) axe equivalent to the following equations:

V x {V¢, + V x E + a(_H...__)+ K_,.,,p}: 0 in f_, (3.4a)
&

V. {V_ + V x E + a(_uH)
0"_--_-+ If.""} = 0 in f_, (3.4b)

n. {V_ + V x E + a(_H..._.._)+ K,,,p} = 0 on rl, (3.4c)

n x {V_o + V x E + a(juH..___))+ K,,.,,p}= o onF:_, (3.4d)&

V x {Vx + V x H a(eE)
_rE - J i'_p} = 0 in _, (3.5a)

V-{Vx+VxH cg(eE)
0t _,E -ji,,p} = 0 in D, (3.5b)

n x {VX+ V x H a(_E)
o_ o'E - J/"'P} = 0 on l"x, (3.5e)

n. {V X + V x H -- cg(eE)
& - _E - Ji_'P} = 0 on r2, (3.5d)

Taking into account the dlvergence-free condition (3.3d) and the compatibility con-
dition (3.2a), from (3.4b) we find that

Ap = 0, in ft. (3.6a)
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Taking into account the boundary condition (3.3e) and Theorem 1, the boundary

condition (3.30, and the compatibility condition (3.2b), from (3.4c) we obtain

n. V_ = 0 on I'x. (3.6b)

From (3.3h) we have

_, = 0 on I'_. (3.6c)

System (3.6) implies that _ -- 0 in _. Similarly, we can show that X = 0 in 12.

Therefore, 7_ and X in (3.3) axe really dummy variables, and thus System (3.3) is

equivalent to System (3.1).

The first-order system (3.3) has eight equations, eight unknowns, and four bound-

ary conditions on each part of the boundary, and thus is properly determined. It is

valid for static, transient, and time-harmonic cases.

In static cases, the time-derivative terms in (3.3a) and (3.3b) disappear, and _rE

is induded into the given current density. The system (3.3) becomes two independent

div-curl systems for the electric field and the magnetic field respectively. In Section

2.2, we have shown that each div-curl system is elliptic.

In time-harmonic cases, when the time factor e j_* is used and suppressed, the

time-derivative terms become the zero-order terms, and the system (3.3) becomes

two coupled div-curl systems. The coupling is through the zero-order terms. The

principle part, i.e., the first-order derivative terms which classify the system, still

have the div-curl structure, and thus the whole system is elliptic.

In transient cases, the whole system (3.3) is hyperbolic. However, in time-domain

numerical methods, the time-derivative terms are discretized by explicit or implicit

finite differences, hence the time-derivative terms become the zero-order terms in the

space domain. For each time step, the time-discretized system is still elliptic.

In summary, in all cases, System (3.3) is properly determined, and is elliptic in the

space domain. Since System (3.1) is equivalent to System (3.3), it is indeed properly

determined and also elliptic in the space domain.

3.3 The Importance of Divergence Equations

It is commonly believed that the divergence equations (3.1c) and (3.1d) are "redun-

dant" for transient and time-harmonic problems, and thus are neglected in compu-

tation. This misconception is the true origin of spurious or inaccurate solutions in

computational electromagnetics due to the following reasons:

(1) The original first-order full Maxwell's equations reflect the general laws of

physics. They govern all electromagnetic phenomena, no matter whether the problem

is static, time-harmonic or transient. But the first-order curl equations (3.1a) and

(3.1b) cannot govern static cases. For static problems, the divergence equations (3.1c)

and (3.1b) must be explicitly included in the first-order Maxwell's equations (3.1).

( 2 ) By taking the divergence of (3.1a), one can conclude only that 0(V .(pH )) / 0t =

0, that is, V. (#H) = F(x). In (3.1a) there is no information about this function.
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SomeUterature asserts that, if the divergence of pH is zero st the beginning, it will be

identically zero forever. The problem then is how one can set V • (pH) -- O initially.

Let us examine the common practice: letting the initial field intensities be zero in

the domain, and the boundary conditions be correctly given on the boundaxy. In this

case, the divergence-free condition is significantly violated near the boundary at the

first time step of the computation. If someone really can make the divergence be zero

at the beginning, it is in fact equivalent to adding a divergence-free equation into the

system. The discussion for the electric field runs along the same line.

(3) The neglect of the divergence equations destroys the ellipticity of Maxwell's

equations in the space domain. In each curl system there axe only three(odd) equations

and three(odd) unknowns that cannot he elliptic in the ordinary sense. In general, the

numerical methods based on a non-elliptic system without special treatment cannot

he proved to possess an optimal rate of convergence. A related investigation can be

found in Jiang and PovineUi [25].

(4) The time marching method is often an etfective approach to solve steady-state

non-linear problems where the material properties depend on the electromagnetic

fields. The cu_fl equations alone axe not adequate for this approach. Neither are the

cuff eqnations appropriate for solving the scattering of waves excited by a pulse wave.

4 The Second-Order Maxwell's Equations

In this section we shall use the div-c,_l method to derive the second-order

Ms×well's equations and their boundaxy conditions, and show that the cuff-cuff equa-

tions cannot stand alone. We shall give the Galerkin method corresponding to the

correct second-order Maxwell's equations. We shall see that this Galerkin method is

of the same form _ the populax Galerkin/penalty method with the penalty parameter

s = 1. We shall also give a simple least-squares look-alike method to obtMn a correct

variational formulation which rigorously justifies that 8 = 1 in the penalty method.

4.1 The Div-Curl Method

By virtue of the div-cufl theorem, System (3.1) is equivalent to

V x {V x E + eg(pH___})+ Kd,_v} = 0 in _, (4.1a)
&

cg(pH)+ Ki, p} = 0 in (4.1b)

n. {V x E + e?(pH____))+ K,,_p} _ 0 on P1, (4.1c)
at

cg(pH) ÷ K"'} - 0 on I'_, (4.1d)
nx{VxE+_
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v x {v xH 0(eE) ,,E-J"_"}= o
&

a(eE) _E- J_""}= 0V.{VxH-. &

O(eE) _E - J_'P} = 0
nx{VxH o_

a(,E) .E- J_=.}= o
n-{VxH

V- (_E)= p_"P i,_f_,

V. (#H) = 0 in n,

nxE=O onrl,

n. (pH) -- 0 on I'1,

nxH=0 onr2,

n- (eE) = 0 on I"2,

in f_,

in f_,

On rl,

on r2,

(4.1e)

(4.1f)

(4.1g)

(4.xh)

(4.1i)

(4.1j)

(4.1k)

(4.10

(4.1,,,)

(4.1n)

Due to the compatibility conditions (3.2), the divergence conditions (4.1i, j) and the

boundary conditions (4.1k-n), we may eliminate Equations (4.1b), (4.1c), (4.1f) and

(4.1h) and rewrite System (4.1) as

V x {V x E + 0(__H)} = -V x K "_p in _, (4.2a)

0(eE) _E} = V x J+'_P in _,
Vx{VxH &

V. (eE) = pi,_p in f_,

V-(pH) = 0 in f_,

nxE=0 onrl,

n. (_H) = 0 on rl,

(4.2b)

(4.2c)

(4.2d)

(4.2e)

(4.2f)

(4.2g)

(4.2h)

(4.2i)

(4.2j)

n x (V x H) = n x j_mp on I'x,

nxH=0 onr2,

n- (_E) : 0 on r,,

n x (V x E) = -n x K i'_p on r2.

System (4.2) is completely equivalent to System (3.1), the validation of (4.2) guar-

antees the validation of (3.1). Therefore, we can use the curl equations in (3.1) to

decouple E and H in (4.2) as usual, then we obtain

O, O(_E) OJ _p
V x (V x E) + #_t. _" + ,E) = -V x K 'm' - #----_- in f2, (4.3a)
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V. (eE) = pl,,,p in n,

nxE=O onrl,

n. (_E) = 0 on r2,

n x (V x E) = -n x K _'p on r,,

and

O O0,H )
V x (V × H) + (,_ + ,) 0_

0
= -(,_ + o,)K _=p + V x ji,,,p

V. (pH) = 0 in ft,

n. (pH) = 0 on rl,

n x (V x H) = n x ;I _''p on rl,

nxH=0 onr2.

(4.3b)

(4.3c)

(4.3d)

(4.3e)

in _t, (4.4a)

(4.4b)

(4.4c)

(4.4d)

(4.4e)

We note that the curl-curlequations in (4.3)and (4.4)cannot stand alone;they must

be supplemented by the divergence equations and the additional natural boundary

conditions. In other words, the curl-curlequations admit more solutions than the

first-orderfullsystem. Tkis is the real reason that the numerical methods based on

the curl-curlequations willgive riseto spurious solutions.

It is difficultto solve a second-order curl-curlequation (4.3a) with the explicit

constraint of the first-orderdivergence equation (4.3b),since the problem has an

overspecified number of partial differentia]equations and the first-orderequation

(4.3b) is hard to deal with numerically. We shall look for a simple way. By using

Theorem 4 and the vector identity (2.12),System (4.3) and System (4.4) can be

reduced to

O, O(eE)

and

--+o'E)=-VxK i=p # at

v(v. (,E) - #',') = o i. n,

nxE=0 onrx,

v. (_Z)= #""

..(_Z)= 0

n x (V x E) =-n x K _=j'

(_)vf",' iT,n, (4.sa)

on rl,

on 1'2,

on 1'2,

(4.5b)
(4.5_)

(4.Sd)

(4.5d

(4.5f)

-AH + (¢_ + o-) = -(,_ + o')K ''p + V x J""'

V(V. (pH)) = 0 in fl,

in _, (4.6a)

(4.6b)
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n. (#H) = 0 on 1,1, (4.6c)

n x (V x H) = n x ji,,p on 1"1, (4.6d)

n × H = 0 on r2, (4.66)

V-(pH) = 0 on 1,2. (4.6f)

Due to the reasons-pointed out in Section2.3, Eq. (4.5b) and Eq. (4.6b) Can be elim-

inated. That is, the divergence equations (4.5b) and (4.6b) are redundant, they are

implicitly satisfied by the Helmholtz-type equations (4.5a) and (4.6a) and the bound-

ary conditions. Therefore, System (4.5) and System (4.6) can be further simplified

as

and

o
0J i'p 1+ erE) - -V x K _'_p - #_ - ( )Vp _'p

nxE--0 onF1,

V. (_E) = pi.p on r_,

n- (_E) = 0 on 1"2,

n x (V x E) = -n x K _'_p on 1"2,

in fl, (4.7a)

(4.7b)

(4.7d)
(4.76)

a 0--AH + (e_ + a) = -(e_ + _r)K ''p + V x jo, n, in _, (4.8a)

n. (pH) = 0 on 1"1, (4.8b)

n x (V x H) = n x J_"_P on 1"1, (4.8c)

n x H = 0 on r2, (4.8d)

V. (pH) = 0 on r2. (4.8e)

We note that the divergence conditions are required to be satisfied only on a part

of boundary. We will rigorously prove this in Section 4.3 by using the least-squares

method. As in Section 2.3 for the div-curl system, one may enforce the divergence

conditions on the whole boundary 1" in (4.7) and (4.8) and show that the divergence

conditions are satisfied in the domain _.

The Helmholtz-type equations (4.7a) and (4.8a) can be found in all text books

on electromagnetics. However, it seems that all these books (except for Mayyergoyz

and D'Angelo [38] who got the same conclusion as ours for a special case) claim that

the Helmholtz equation must be solved wi'th the divergence equation satisfied in the

whole domain and do not mention that it needs additional boundary conditions. Our

rigorous derivation using the div-curl method shows that the Helmholtz equation can

stand alone, and the divergence equation should be satisfied only on a part of the

boundary.

The advantages of using the Hdmholtz equation over the curl-curl equation are

obvious: one avoids the difficulty involving the explidt satisfaction of the divergence

equations, instead one solves three decoupled second-order equations with coupled

boundary conditions.
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4.2 The Galerkln Method

One may elect to use, for example the finite difference method, to solve the Helmholtz-

type systems (4.7) or (4.8). Usually, the finite difference method is based on rectangu-

lax structural grids. In this case, for example, the divergence condition (4.8e) can be

simplified as the Neumaan boundary condition (see Mayergoyz and D'Angelo [38]):

--_nH,_ = 0 on F2.

For complex geometry it is not straightforward to implement the Neumann boundary

condition in the finite difference method. By using the finite element method based

on a variational principle, even the divergence conditions on the boundaxy do not

appear. In the following we derive the variational formulation corresponding to (4.7).

By taking into account the vector identity (2.12), the Galerkln formulation asso-

dated with (4.7) is: find E satisfying (4.7h) and (4.7d) such that

(V x {V x E + Ki'n}, E*)+ < V x E + K i_v, n x E" >r2

-t-(-V{V. E - pi'_n/e}, E')-F < V-E - p"_J'/e,n. E" >r,

0 O(eE) , OJ_P
(p_{ _ + _E},E*) + (p--_,E*) -- 0 (4.9)

for all E* satisfying (4.7h) and (4.7d). By virtue of Green's formula, the statement

(4.9) can be simplified to a more symmetric form: find E satisfying (4.7b) and (4.7d)
such that

, 0 f0(_E)
(VxE, VxE*)+(V.E,V-E*)+tp_, t _ +_E},E*)=

-(K_'P,V xE')+(pI"n/s,V.E*)-(p_J_"P,E *) (4.10)

for all E ° satisfying (4.7b) and (4.7d).

For time-harmonic(eigenvalue) problems with _ - 0, the variational formulation

takes the form

(V × E, V × E*) + (V-E, V. E*) - w_pe(E,E °) = 0, (4.11)

where w is the angular frequency. The formulations for the magnetic field axe similar.

The variational formulations (4.10) and (4.11) axe of the same structure as the

most popular Galerkin/penalty formulations in the literature. However, in contrast

to the commonly used penalty formulation, there is no free parameter in the Galerkin

formulation (4.10) and (4.11). In other words, the penalty parameter s = 1 should be

chosen in the penalty method in order for the penalty method to correspond to the

Helmholtz-type equations (4.7).
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4.3 The Least-Squares Look-Alike Method

In Section4.1the ally-curl method is employedto derivethe second-order(Helmholtz-
type) Maxwell's equationsand their boundary conditionsthat guaranteeno spurious
solutions. But there we cannot makesure that the divergence conditions should be

specified only on a part of boundary. In this section we give a more powerful method

to derive equivalent higher-order equations and rigorously prove the statement made

in Section 4.1.

Consider the following div-curl system for the electric field:

V × E = _(pH) Ki,, p in a, (4.12a)
0t

V. E = p_"P/t in fl, (4.12b)

n x E : 0 oR rl, (4.12c)

n-(eE) = 0 on r2, (4.12d)

where H is assumed to be kaown and to satisfy Eq. (3.1b) and the boundary conditions

(3.1f) and (3.1g), and the source terms satisfy the compatibility conditions (3.2a-e).

In other words, when the magnetic field and the sources are given, the solution of

(4.12) will give the corresponding electric field. Obviously, System (4.12) is a typical

div-cufl system that has been investigated in Section 2.

Following the steps in Section 2.4, we can derive the variational formulation which

corresponds to System (4.7). We define the quadratic functional:

I(E) = IIVx S -4-
0(#H)

&
+ K" "II+ IIV-E-

in which E satisfies the boundary conditions (4.12c,d). The minimization of I leads

to the variational formulation:

(V x E + 0(pH_____))+ K,mp ' V × E*) + (V. E - p"'P/e, V. E*) = 0, (4.13)
0t

where E* = FE and satisfies the same boundary conditions as E. Since H satisfies

(3.1b) and (3.1g), from (4.13) we have

, o .0(eE)
(VxE, VxE*)+(V.E,V-E*)+(#_I. _- +aE},E*)=

imp *

-(K "'p,V x E*) + (p, mp/_, V. E*) - (#_J ,E ), ' (4.14)

which is exactly the same as (4.10). By using Green's formula, from (4.14) we can

obtain the Euler-Lagrange equation (4.7a) and the natural boundary condition (4.7c)

and (4.7e). That is, the correctness of (4.7) or (4.8) is completely proved.
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Now we understand that the variational formulation (4.14), the Helmholtz-type

equation (4.7a) and its boundary conditions, and the first-order system (4.12) are

equivalent to each other. However, the finite element method based on (4.14) has

superior advantages: the divergence condition (4.12b) is automatically satisfied, the

test mad trial functions arerequlred to satisfy only the essential boundary conditions

(4.12c,d).

We remark that the procedure to obtain the formulation (4.14) is not a true least-

squares approach, because (1) we have assumed that H is given and satisfies (3.1b),

and hence H is not subject to the variation; (2) the true least-squares method always

leads to a symmetric bilinear form; here the _r related term is not symmetric. Even

so, this procedure is mathematically justifiable. It is nothing but a rigorous method

to derive the Galerkin variational formulation corresponding to the Helmholtz-type

equations (4.7a) and their boundary conditions. All derivation provided in this section

has rigorously proved that the penalty parameter in the Galerkin/penalty method

should be equal to one.

5 The Least-Squares Method for First-Order Maxwell's

Equations

In Section 2.4 we have introduced the least-squares method for the pure div-curl

system governing static field problems, and in Section 4.3 the least-squares look alike

method for the div-curl system describing time-dependent single(electric or magnetic)

field problems, and demonstrated the power of the least-squares method. In this

section we briefly give the formulations of the LSFEM for the general first-order

partial diferential equations, and apply it to the solution of the time-harmonic first-

order Maxwel]'s equations.

5.1 The General Formulation

The least-squares method for the linear operator equation Au = f formally is equiva-

lent to the solution of the hlgher-order equation A*Au = A*f with Au = f serving as

an additional natural boundary condition, where A* is the adjolnt of A in the inner

product generated by the L_ norm. When directly applied to second-order equations

this approach requires the use of C 1 finite elements and leads to ill-condltioned dis-

crete systems. In order to use simple C O elements and obtain a better-conditioned

algebraic system, the least-squares method discussed here is based on the first-order

system. The formulation of the least-squares finite element method for general first-

order steady-state boundary-value problems can be found in Jiang and Povinelli [24].

This formulation can be directly applied to the solution of the fLrst-order steady-state

and time-harmonic Max'well's equations. For time-dependent problems one always can

use an appropriate finite difference method in the temporal domain, such as the back-

ward Enler scheme or the Crank-Nicolson scheme, to discretize the time-derivative
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terms sothat in eachtime-step the problemsareconvertedinto boundary-valueprob-
lems. For completeness,we briefly derivethe generalleast-squaresformulation.

We consider the linear boundary-valueproblem:

Au = f in f_, (5.1a)

Bu=g on F,

where A is a flzst-order partial differential operator:

(5.1b)

n,_ Ou

An= + A0u, (5.2)
i=1

in which f2 E R "_ is a bounded domain with a piecewise smooth boundary P, na =

2 or 3 represents the number of space dimensions, u _" = (ul, u2, ...u,_) is a vector of m

unknown functions of x = (zl, ..., zn4), A_ and A0 are n × m matrices which depend

on x, f is a given vector-valued function, B is a boundary algebraic operator, and

g is a given vector-valued function on the boundary. Without loss of generality we

assume that the vector g is null. We should mention that the number of equations n

in the system (5.1a) must be greater than or equal to the number of unknowns m.

Considering the boundary condition of the boundary-value problem, we also define

the function space

V-- {v _ HI(_)"[ By = 0 on I'). (5.3)

Let us suppose that f E L2(f2) and A : V --, L2(f_). For an arbitrary trial function

v E V, we define the residual function:

R = Av - f in fL (5.4)

In general the residual R is not equal to zero, except v is equal to the exact solution

u. The squared distance between Av and f will be nonnegative:

]IR[I_ -/n(Av- f)2df_ > 0. (5.5)

A solution u to the problem (5.1) can thus be interpreted as a member of V that

minimizes the squared distance between Av and f:

0 : ]lR(u)l[02 _<[[R(v)[[_ Vv _ V.

The least-squares method consists of seeking a minimizer of the squared distance

liar - fH02 in V. We write the quadratic functional in (5.5) as

I(v) - liar - fl12o- (Av - f, Av - f). (5.6)

A necessary condition that u E V be a minimizer of the functional I in (5.6) is that

its f_st variation vanish at u for all admissible v. That is,

dI(u + rv) =- 2/n(Av)T(Au - f)df_ = 0
•" OdT

VvEV.
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Thus, the least-squares method leads us to the variational boundary-value problem:

Find u E V such that

B(u, v)= F(v) W _ V, (5.7a)

where

B(u,.) = (Au,A.),

F(v) - (f, Av).

In the finite element analysis, we first subdivide the domain as a union of finite

elements and then introduce an appropriate finite element basis. Let N, denote the

number of nodes for one element and _bj denote the element shape functions. If equal-

order interpolations are employed, that is, for all unknown variables the same finite

element is used, we can write the expansion in each element

(::)u (x) = ¢jCx)
j=l

J

(5.8)

where (ul,u_, ...,u,_)j axe the nodal values at the jth node, and h denotes the mesh

parameter.

Introducing the finite element approximation defined in (5.8) into the variational

statement (5.7), we have the linear algebraic equations

KU-- F, (5.9)

where U is the global vector of nodal values. The global matrix K is assembled from

the element matrices

Ke - fn (A_I'A_2'""A_bN")T(A_bl'A_2'""A_N")d_' (5.10)
¢

in which f_ C f2 is the domain of the eth element, and T denotes the transpose, and

the vector F is assembled from the element vectors

Fe- /tl (A_x,A_2,...,A_bN,,)2"fd_, (5.11)

in (5.10) and (5.11)

" a_jA i
A_,j -- _ _ ÷ _,_.A.o. (5.12)

i=1

From the above derivation we can immediately find out or further prove that:

(1) the least-squares method is universal for all types of partial differential equa-

tions, no matter whether they are elliptic, hyperbolic, parabolic or mixed; the oniy

requirement is that they have a unique solution, see Mikklin [40] and Ma_chuk [39];
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(2) the LSFEM leads to a symmetric positive definite algebraic system which

can be solved efficiently by matrix-free iterative methods, such as the element-by-

element preconditioned conjugate gradient method, and thus the parallelization and

large-scale 3D computation is made easy;

(3) the LSFEM formulation and its coding are general, therefore for a new problem

one needs only to supply the coefficients, the load vector and the boundary conditions;

(4) the LSFEM is robust, no special treatments, such as upwinding, staggered

grids, and operator splitting etc. are needed; the LSFEM leads to a minimization

problem rather than a saddle-point problem, thus simple equal-order interpolations

can be employed;

(5) the LSFEM can often be proved to have optimal numerical properties inducting

an optimal rate of convergence;

(6) the LSFEM satisfies the divergence conditions in electromagnetics.

5.2 Time-Harmonic Fields

For three-dimensional time-harmonic fields, the first-order full Maxwell's equations

can be written as

V × E + jwpH = -K i''p in _,

V × H -jweE = 3 _'_p in f_,

V-E = 0 in [2,

V-H = 0 in _,

(5.13a)

(5.13b)

(5.13c)

(5.13d)

where the time factor ej'n is used and suppressed, oJ is the given angular frequency

and not equal to the resonant frequencies of this problem, E and H are the com-

plex electric and magnetic field intensities respectively, ji,np and K i'm' are imposed

harmonic sources of electric and magnetic current density respectively. All imposed

sources are given functions of the space coordinates. For simplicity, we consider ho-

mogeneous isotropic media, i.e., e and p are constant scalars. The field equations are

supplemented by the homogeneous boundary conditions:

n×E=O on 1_i, (5.13e)

(5.13f)

(5.13g)

(5.13h)

n.H=0 onP1,

n×H=0 onP2,

n.E=0 onP2.

where rl is an electric wall, and P2 is a magnetic symmetry wall.

To allow System (5.13) to have a solution, the source terms cannot be arbitrary,

they must satisfy the following compatibility conditions:

V- K i'_p = 0 in f_, (5.14a)
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n. K imp = 0 on rl, (5.14b)

r n. Ki'_Pdr = 0, (5.14c)

V . ji,,p = 0 in fl, (5.14d)

n. ji,_p = 0 on F2, (5.14e)

f n-J""PdI' : O. (5.14])
Jr

As in the time-varying cases, the compatibility conditions (5.14a,b) and (5.14d,e)

can be derived by applying the div-cufl method to the curl equations (5.13a,b). The

compatibility conditions (5.14c) and (5.14f) can be obtained by applying the Gauss

divergence theorem to (5.14a) and (5.14d), respectively.

Separating the real and imaginary parts in (5.13) leads to

V x E, - _I-I, = -K_'P

V x El + wpH, = -K_ ''p

V x I'L + _eE_ = J_,'_

V x Hi - wEE, = J_"P

V . E, = 0 in fl,

V . El = 0 in f_,

V. H, = 0 in f},

V. Hi = 0 in _.

in f_,

in f_,

in _,

in _,

(5.15a)

(5.15b)

(5.15c)

(5.15d)

(5.15e)

(5.15f)

(5.15g)

(5.15h)

Obviously, System (5.15) is elliptic, since its principle part consists of four div-cufl

systems. For the solution of (5.15) the least-squares variational formulation is: find

u = (E,, El, I-L, Hi) • 1_ such that

B(u,v) = L(v) Vv= (E_*,E*,H:,H*) • 7l, (5.16)

where 7t = {u • H'(f_) s x H'(f_) s x H'(f_) s x H'(f_)Sln x E = 0 on r,,n. H =

0 on rl,n x H = 0 on r,,n. E = 0 on r2}, and B(-,.) is the bilinear form

B(u,v) = (V x E, -wpHi,V x E: -wpH;)

+(w × E_+ _I_, W × El + _H;)

+(V x H, + weE_, V x H* + wEE*)

+(V x I-_ -- weE,,V x Hi - wEE,*)

4-(V • E,,V • E:) + (V • E,,V • S_-)

+(V. E,, V-E:) + (V-El, V. E;), (5.17a)
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and L(.) is the linear form

. L(v) = (-K;'--,V × E:- _,H')

+(-K_ '_p, V x E* + w_H;)

+(_,m,, V x S,* + w_E;)

+(_"P, V x H,*. - weE*). (5.17b)

Obviously, the bilinear form B(u, v) in (5.17a) is symmetric and continuous, and

the linear form L(v) in (5.17b) is continuous. One may prove that if the frequency

of the exciting source is not equal to the resonant frequencies of this electromagnetic

system, then the bilinear form B(u, u) is coerdve. By virtue of the Lax-Milgram the-

orem, the least-squares sohtion uniquely exists and the corresponding finite dement

solution is of an optimal rate of conve:gence. In fact, the following statement is the

consequence of the coerdveness of the bilinear form B(u, u). We will prove it in our

future reports.

[]E, - E,h[lo_<C hh+l,

lIE,- Eihllo_ Ch_+I,

[[H,- H, hllo_ Chk+x,

llS_- S_hllo--<Ch_+_,

The LSFEM based on (5.16) has an optimal rate of convergence and an optimal

satisfaction of divergence-free conditions:

IIv • E,.,,llo < Ch _, (5.18a)

llv. E,hll0 < Ch k, (5.18b)

IIV-H,hllo < Oh", (5.18c)

IIV. H,hllo< ch _', (5.18d)

where E,h, E_, H,h, H_h axe the finite element solutions, k is the order of complete

polynomials in the equal-order finite dement interpolation.

5.3 Time-Harmonic TE Waves

For time-harmonic TE waves the first-order Maxwell's equations are

oE, OE.
jwpH, + Oz Oy = 0 in f_,

(5.19a)

jwe*E= Oy - 0 in f_,

OH,
jwe*Eu + Oz --0 in _,

OE. OE,
i.a,

(5.19b)

(5.19c)

(5.19d)
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in which e* = _, + j_i = _ + ja/w is the complex permitfivity where the subscripts

r and i indicate the real part and the imaginary part, respectively. For a complete

description of TE wave problems appropriate boundary conditions should be included.

One may consider, for example

H, = constant on r, (5.19e)

E... + E_._ =0 onr, (5.19/)
where n = (nffi, n_) is the unit vector normal to the boundary P. The condition (5.19e)

is an inhomogeneous version corresponding to (5.13g), and (5.19f) is a 2D version of

(5.13h). We also remark that the boundary conditions (5.19e,f) satisfy the boundary

compatibility condition

OH, OH,
jwe*(E_n., + E_%)= --_-y n,,---_-fz n_ on r, (5.20)

which is obtained by taking the operation n- to Eq. (5.19b) and (5.19c).

In System (5.19) there are three unknowns and four equations, and thus the

divergence-free equation (5.19d) seems redundant. By introducing a dummy variable

19 into System (5.19) we have

oo OH.
jwe'E,, + Oz _ = 0

o_ OH,
j,,,CE, + -_ + _ =o

in fl, (5.21b)

i. a, (5.21c)

OE. OE,,
+ _ =0 i.a. (5.21d)

By taking the operation _/_z to Eq. (5.21b) and the operation _/_y to Eq. (5.21c),

and by adding the results together we obtain the Laplace equation for 0:

+ _ = 0 in fl. (5.22a)
c_j-

By taking the operation n- to the equations (5.21b) and (5.21c) and using the bound-

ary compatibility condition (5.20) we obtain

On=0 onr. (5.22b)

From (5.22) we know that # = constant, that is, System (5.19) is completely equiv-

alent to the augmented system (5.21) with four unknowns and four equations. Since
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System(5.21) consistsof two two-dlmensionaldiv-curl systems, and thus is elliptic.

Therefore, System (5.19) is not 'overdetermined', but is indeed properly determined

and elliptic.

For numerical calculation separating the real and imaginary parts in (5.19a-d)

leads to

OE_, OE.,
-wpH_ + a---_ - O---y- = 0 in f_, (5.23a)

-w(_,E= + _E_,)
Oy

= 0 in f_, (5.23b)

8H_.

8z = O, in _ (5.23c)

OE_ OE_
+-%-y =o in _, (5.23d)

wpH=. + OE_ OE_ = 0 in _, (5.23e)
Oz O_

w(e,.E_ - e,E=) OH,a = 0 in a, (5.23f)
Oy

,_(_,E_,- _E¢) +
OHzl

= 0 in a, (5.23g)
Oz

aE= aE_
+ _ = 0 _. a. (5.23h)

Of course, in (5.23) the medium properties are dltTerent for different medium regions.

We may write System (5.23) in the standard matrix form:

Ou Ou
A, -_-- + A2--_ + Aou = f, (5.24)

Oz ay

in which

A1 --

0 0 10

0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

0 0

0 0

0 0

0 0

0 1 '

0 0

0 0

1 0

(5.25a)
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A 0 -

A2 -

0

0

0

0

0 '

0 0

-1 0

0 0

0 0

0 0

0 -1

0 0

0 0

0 -cop

--w_ 0

0 0

0 0

0 0

we, 0

0 0

0 0

9_

0 0

0 0

0 -we.,.

0 0

wp 0 '

0 0

0 -wel

0 0

-1 0 0

0 0 0

0 0 0

0 1 0

0 0 -1

0 0 0 0

0 0 0 0

0 0 0 1

0 0

0 -we,.

-wei 0

0 0

0 0

0 -we/

we,. 0

0 0

01 E_,

o E_
0 ' H_

0 E=

0 _E_,

f _..

(5.25b)

(5.25c)

At the interface r_._ between two contiguous media (+) and (-) the following

general conditions should be satisfied:

n x E + = n x E- on r_, (5.26a)

nxH+=nxH -

n.(e*+E+)=n-(d-E -)

n.(p+H +) =n.(#-H-)

an r_, (5.26b)

on r_, (5.26c)

on r_. (5.26d)

For two-dimensional TE waves the interface conditions (5.26a) and (5.26c) become

_.E_+-_E+ = _.E_-_,

_.E$-_E_ =..E_-_E_,

_.(_,+E+_-_,+E=+)+_#.+E+-,,+E$)=
n.(_; E:.,- _;E:.,)+ ,_,(CE_ - _=,E;,,),

_,E:.,)=_,E:,)+ %(_ E$ +n=(e+E+ + + + + + + +

(5.27a)

(5.2Zb)

(5.27c)
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+ (5.27d)
The interface condition (5.26d) is automatically satisfied, and (5.26b) becomes

H + = H_-. (5.27e)

In the LSFEM the treatment of the interface conditions is not difficult. As in

other node-based finite element methods, the nodes on the interface should be double-

numbered. If a direct solver is employed for solving the discretized system, two ap-

proaches are available: a simple way is to include the interface conditions into the

least-squares functional; a better way is to use the conditions (5.27a-e) to modify the

global stiffness matrix in the discretized system. If the conjugate gradient method

is used, one just simply chooses the unknowns related to the medium (+) (or (-))

as the true unknowns and keeps the conditions (5.27a-e) satisfied for each solution

vector.

Since the general formulation of the LSFEM has been given in Section 5.3, it is

not necessary to write down the special one for the problem discussed in this section.

One only needs to substitute the coefficients of (5.24) and the boundary conditions

into a general-purpose LSFEM code.

We consider two test problems that are taken from Paulsen and Lynch [49] in

which the spurious solutions given by the curl-curl formulation as well as the correct

solutions are illustrated.

The first example is a cylinder (R=25) which is split into two regions having

dit[erent complex permittivlty. For the top region, _+ :-- 3.0, e + -- -5.0 and p+ = 1.0;

for the bottom region, e_- = 1.0, _- -- 0.0 and #- - 1.0. This cylinder is excited

by a uniform H.Ir = (1,0) (with _v - 0.05) imposed on the outer boundary. This

problem is discretized by 932 bi-linear elements with 1016 nodes shown in Fig. l(a).

The contours of the computed real and imaginary magnetic field intensity are shown

in Fig. l(b) and (c), respectively. The vector plots of the real and imaginary electric

field intensity are illustrated in Fig. l(d) and (e), respectively.

In the second example, a smaller off-center cylinder (R=0.1) is embedded in a

larger cylinder (R=0.25). The material properties for the outer region are e+ - 0.0981,

_+ - -0.0196 and p+ = 1.0; for the inner region _" - 1.0, e_- - 0.0 and p- - 1.0.

A  form  zlr = (1,-0.15) (with = 44.7) is imposedon the outerbound y.
Fig. 2(a) shows the mesh with 2027 bi-linear elements and 2165. The contours of

the computed real and imaginary magnetic field intensity are shown in Fig. 2(b,c),

respectively. The vector plots of the real and imaginary electric field intensity are

illustrated in Fig. l(d,e), respectively.

As expected all computed results by the LSFEM are free of spurious modes.

6 Conclusions

(1) The system of the ftrst-order full Maxwe]l's equations seems "overspecified"

because it has more equations than unknowns. By taking into account of its dlv-
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curl structure and introducing the dummy variables it proves to be properly deter-

mined and elliptic in the space domain. The information provided by the divergence

equations is not completely contained in the curl equations. Therefore, the diver-

gence equations must be explicitly included in the first-order system to assure the

uniqueness of the solution in steady-state cases and to guarantee the accuracy of the

numerical solution for time-varying cases.

(2) The least-squares method and the div-curl method are mathematically rigor-

ous and useful tools for the derivation of correct second-order Maxwell's equations

and their boundary conditions. The curl-curl equations cannot stand alone, they must

be supplemented by the divergence equations and additional natural boundary con-

ditions to eliminate the spurious solutions.

(3) The Helmholtz-type equations with appropriate natural boundary conditions,

derived by the div-curl method or the least-squares method, can guarantee the im-

plicit satisfaction of the divergence equations. For the solution of the Helmholtz-type

equations the divergence conditions of the electric field and the magnetic field need to

he enforced only on the electric wall and the magnetic symmetry wall, respectively.

(4) The variational formulation corresponding to the Helmholtz-type equations

can be derived by using the least-squares look-allke method. This formulation theo-

retically justifies that the penalty parameter in the Galerkin/penalty method should

be taken as one. The advantage of this formulation is that the trial and test functions

need only to satisfy the conditions related to the essential boundary conditions.

(5) The node-based least-squares finite element method(LSFEM) can be used

to solve both static and time-varylng first-order Maxwell's equations directly and

efficiently with the divergence equations satisfied easily. The introduction of potentials

and the gauging method, the edge element method, the staggered grid and upwinding,

etc. all turn out to be unnecessary.
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Fig. l(a) The split cylinder and the mesh.
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(c)

(a) (e)

Fig. l(b) Contours of constant magnetic field intensity H_.

Fig. l(c) Contours of constant magnetic field intensity Hi.

Fig. l(d) Vectors of the computed electric field intensity E_.

Fig. 1 (e) Vectors of the computed electric field intensity Ei.
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Fig. 2(a) The off-center cylinder.
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(d) (e)

Fig. 2(b) Contours of constant magnetic field intensity H_.

Fig. 2(c) Contours of constant magnetic field intensity Hi.

Fig. 2(d) Vectors of the computed electric field intensity E_.

Fig. 2(e) Vectors of the computed electric field intensity Ei.
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